Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism.

نویسندگان

  • Jacques Joyard
  • Myriam Ferro
  • Christophe Masselon
  • Daphné Seigneurin-Berny
  • Daniel Salvi
  • Jérôme Garin
  • Norbert Rolland
چکیده

Recent advances in the proteomic field have allowed high throughput experiments to be conducted on chloroplast samples and the data are available in several databases such as the Plant Protein Database (PPDB), or the SubCellular Proteomic Database (SUBA). However, the accurate localization of many proteins that were identified in different subplastidial compartments often remains hypothetical, thus making quantitative proteomics important for going a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regard to their accurate localization within the chloroplast. Spectral counting, a semi-quantitative proteomic strategy based on accurate mass and time tags (AMT), was used to build up AT_CHLORO, a comprehensive chloroplast proteome database with curated subplastidial localization. In this review, we focus on about a hundred enzymes involved in fatty acid biosynthesis, export and metabolism (desaturation and oxylipin metabolism), in the synthesis of chloroplast-specific glycerolipids either with a eukaryotic or a prokaryotic structure. Two main chloroplast compartments play a major role in lipid biosynthesis: the initial steps of fatty acid biosynthesis take place in the stroma, then the envelope membranes concentrate most of the proteins involved in chloroplast glycerolipid metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins.

Halophyte, like Salicornia europaea, could make full use of marginal saline land for carbon fixation. How the photosynthesis of S. europaea is regulated under high salinity implicates a significant aspect to exploit this pioneer plant in future. Measurement of photosynthesis parameters demonstrated the reduction of photosynthesis for the 0 and 800 mM NaCl treated plants are more likely due to n...

متن کامل

Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype.

Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of L-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellul...

متن کامل

SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis

The subcellular location database for Arabidopsis proteins (SUBA3, http://suba.plantenergy.uwa.edu.au) combines manual literature curation of large-scale subcellular proteomics, fluorescent protein visualization and protein-protein interaction (PPI) datasets with subcellular targeting calls from 22 prediction programs. More than 14 500 new experimental locations have been added since its first ...

متن کامل

Evolution and communication of subcellular compartments: An integrated approach.

Compartmentation is a fundamental feature of eukaryotic cells and the basis for metabolic complexity. We recently reported on the protein compartmentation in the moss Physcomitrella patens. This study utilized a combination of quantitative proteomics, comparative genomics, and single protein tagging and provided data on the postendosymbiotic evolution of plastids and mitochondria, on organellar...

متن کامل

Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana.

The development of chloroplasts and the integration of their function within a plant cell rely on the presence of a complex biochemical machinery located within their limiting envelope membranes. To provide the most exhaustive view of the protein repertoire of chloroplast envelope membranes, we analyzed this membrane system using proteomics. To this purpose, we first developed a procedure to pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Progress in lipid research

دوره 49 2  شماره 

صفحات  -

تاریخ انتشار 2010